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Modeling of gas dynamics in a pulse combustion chamber
to predict initial drying process parameters
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Abstract

A mathematical model of gas-dynamical processes in a pulse combustion chamber for drying of materials is formulated with regard
for the second viscosity. Results of numerical solution of the gas-dynamical problem are reported. In particular, it is shown that the time
dependences of the gas pressure and velocity represent sinusoidal plots with a phase shift. Introduction of the dissipation term with a
second viscosity factor is found to stabilize a computational process. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the last few years, the use of pulse combustion in
various technological processes has aroused considerable
interest in many countries. Though the technology of pulse
combustion has long been known, the devices based on it
are not widely used despite their many attractive character-
istics. Recent trends in development of pulse combustion
apparatuses are toward creation not only of units with
a low thermal capacity but also of industrial-scale appa-
ratuses. There is a consensus of opinion that the main
promising candidates for practical use of technological
pulse combustion are air heaters, water heaters, steam gen-
erators, drying, etc. Experience which has been gained
over a number of years confirms that pulse combustion is
a promising form of technological combustion. It allows
one to considerably increase a heat and mass transfer rate
and a combustion rate to decrease carbon oxide emission
[1–5].

Pulse combustion chambers (PCCs) are highly efficient
sources of high-temperature pulsating gas streams. A gas
medium, which leaves a pulse combustion chamber, is char-
acterized by velocity fluctuations making, approximately,
100 m/s with a frequency ranging from 50 to 200 Hz. A
high-speed high-temperature pulsating jet can be employed
to atomize solutions and to dry the latter efficiently without
any rotating sprayers and atomizers [6].
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A design basis of the pulse combustion technology is a
special fire apparatus in which a pulsating regime of gas
flow is realized. Two types of PCC are known and used in
industry, namely, PCCs with mechanical and aerodynamic
valves. In chambers of the first type, the valves execute either
by reciprocating or through rotary motion. PCCs with a
mechanical rotary valve allow gas flow oscillations with high
acoustic parameters to be obtained. However, they possess
certain drawbacks which include the presence of moving
elements subjected to wear in a high-temperature zone.

PCCs with aerodynamic valves do not possess the
above drawbacks. In literature [3,7], the scheme of a conic
tangential-type PCC with an aerodynamic valve is known.
Pressure feed of air and mixture ignition are required only
at the moment of start. An aerodynamic valve in this design
ensures a smaller resistance to a gas flowing into the com-
bustion chamber than in the reverse direction.

Proceeding from an analysis of PCCs and dryers on
their basis, it follows that a PCC is the efficient source of
high-temperature gas flows allowing intensification of heat
and mass transfer processes under drying conditions. It is
evident that dynamics of gas flows has a decisive role in the
efficiency of a drying process.

2. Theory

In the present work, gas-dynamical processes in a PCC are
investigated by the method of mathematical modeling. Up-
to-date hydrodynamic models of gas dynamics and turbu-
lence are built in the assumption of small pressure gradients
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Nomenclature

cp, cv heat capacity of the gas at constant
pressure and volume (J/(kg K))

d diameter of the combustion chamber (m)
h enthalpy (J/kg)
P gas pressure (Pa)
q0 flow rate of the combustible mixture (m3/s)
R universal gas constant (J/(kmol K))
t time (s)
T gas temperature (K)
v gas velocity (m/s)
V0 amount of air theoretically required for

complete combustion (m3/m3)
x coordinate (m)

Greek symbols
α coefficient of the excess of air
η coefficient of shear viscosity (Pa s)
λ distance between the layers (m)
µ molecular mass (kg/mol)
ξ second coefficient viscosity (Pa s)
ρ density (kg/m3)

Subscripts
i, k, e components of the stress tensor
z cycle
x coordinate
1 fuel
2 combustion products
3 air
0 initial value
(1), (2) cross-sections of the chamber

Superscript
– mean value

in a flow. However, in the presence of considerable pressure
fluctuations in a combustion chamber, the assumption about
smallness of pressure gradients is already incorrect.

2.1. Structure of the viscous stress tensor

It is known that the equations for viscous fluid motion
can be obtained by adding the complementary term δik ,
determining irreversible viscous momentum transfer in fluid
(gas), to the ideal momentum.

The tensor of second rank satisfying these conditions is
known [8] in the general form as

σ ′
ik = η

(
∂vi

∂xk
+ ∂vk

∂xi
− 2

3
δik

∂ve

∂xe

)
+ ξδik

∂ve

∂xe
(1)

Now we will show that (1) is valid in the case when the
temperature and pressure gradients are sufficiently small. For

this, from simple molecular-kinetic considerations we will
determine the resultant momentum L = L′ − L′′ between
fluid layers moving with velocity v′

x and v′′
x , respectively.

A magnitude of the momentum L transferred across unit
area of the small area S0 per unit time is determined by
the difference of the momentum L′ and L′′ transferred by
molecules crossing the area on the left and on the right; the
momentum L′ transferred by molecules from the left to the
right is equal to the product of the momentum of a single
molecule by the number of molecules per unit area per time.
The latter, as shown in [9], is equal to 1

6nv̄, where n is the
number of molecules per unit volume, v̄ the mean velocity
of gas molecules. If the gas velocity at the distance λ to the
left from S0 is v′

x , the mean molecular velocity is v̄′ and the
gas pressure is ρ′, then the momentum L′ acquires the form

L′ = 1
6ρ

′v̄′v′
x (2)

By analogy,

L′′ = 1
6ρ

′′v̄′′v′′
x (3)

Consequently,

L = L′ − L′′ = 1
6 (ρ

′v̄′v̄′
x − ρ′′v̄′′v̄′′

x ) (4)

whence at the distance 2λ, it follows that

L = 1

3
λ
∂(ρv̄vx)

∂y
(5)

For ρv̄ = const., we have an ordinary expression for L:

L = 1

3
ρv̄λ

∂vx

∂y
= η

∂vx

∂y
(6)

Using a small difference between the mean and root-mean-
square velocities (9%) of the gas molecules (3), we express
a molecular flux of mass in terms of the pressure and density
[9]:

ρv̄ ∼= ρ
√
v̄2 ∼=

√
3Pρ (7)

The mean molecular velocity is determined not only by
thermal motion but also by pulsating and turbulent motion,
therefore it is preferable, in our opinion, to write the molec-
ular flux of mass in terms of the pressure. At constant Pρ,
formula (5) must turn into formula (6), therefore an approx-
imate expression for L can be represented in the form

L = η√
Pρ

∂
(√

Pρ · vx
)

∂y
(8)

An expression for the viscous stress tensor for gases at large
pressure gradients or frequencies with allowance for (8) has
the form

σik = η√
Pρ

[(
∂
√
Pρ · vi
∂xk

+ ∂
√
Pρ · vk
∂xi

)

−2

3
δik

∂
√
Pρ · ve
∂xe

]
+ ξ

δik√
Pρ

∂
√
Pρ · ve
∂xe

(9)

It is easily to verify that the tensor σ ik is symmetrical and
goes to zero when all fluid, as a whole, executes a uniform
motion [8].
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2.2. Equations of fluid dynamics

As it is known, the equations of viscous fluid motion can
be obtained directly by adding the expressions ∂σ ′

ik/∂xk to
the right-hand side of the Euler equation. Thus, we arrive at

ρ

(
∂vi

∂t
+ vk

∂vi

∂xk

)

= − ∂P

∂xi
+ ∂

∂xk

{
η√
Pρ

(
∂
√
Pρ · vi
∂xk

+ ∂
√
Pρ · vk
∂xi

−2

3
δik

∂
√
Pρ · ve
∂xe

)}
+ ∂

∂xe

(
ξ√
Pρ

∂
√
Pρ · ve
∂xe

)
(10)

If there are periodic changes or large gradients
√
Pρ in the

flow, then instead of the known Navier–Stokes equations it
is preferable to use the modified equations (10) and, in doing
so, in the case of “acoustic” flows it is desirable to preserve
the term(
ξ + η

3

)
grad

(
1√
Pρ

div
(√

Pρ · 
v
))

if ξ = const. and η = const. (11)

related to compressions or rarefactions. In the equations of
gas dynamics, the viscosity terms are, as a rule, not taken into
account. Next, we will show that in a compressible pulsating
gas flow in a combustion chamber, a peculiar “dissipative”
term leads to smoother solutions.

2.3. System of the equations of gas dynamics

Finally, we will write the equations of gas dynamics with
an account for second “acoustic” viscosity [10].

The equation of continuity

∂ρ

∂t
+ div(ρ
v) = M (12)

The equation of momentum conservation:

∂ρ
v
∂t

= −grad

(
P + ρ
v2

2

)
+ v̄M

+
(
ξ + η

3

)
grad

(
1√
Pρ

div
(√

Pρ.
v
))

(13)

Fig. 1. Schematic of the pulse combustion chamber.

The equation of energy conservation:

∂

∂t

[
ρ

(
h − P

ρ
+ 
v2

2

)]

= M 
v2

2
− div

{
ρv̄

( 
v2

2
+ h

)}

+
v
(
ξ + η

3

)
grad

{
1√
Pρ

div
(√

Pρ · 
v
)}

(14)

The second coefficient of viscosity ξ has the same order of
magnitude as the viscosity coefficient η. The viscosity of the
present gas, unlike the fluid, is independent of the density or
pressure and does not increase but, on the contrary, decreases
with the temperature. For air, the viscosity is η = 1.8 ×
10−5 Pa s. Note that the system of equations obtained allows
the “acoustic” dissipation of energy to be taken into account.

3. Mathematical model

Consideration is given to a compressible fluid flow in a
pulse combustion chamber of a variable section (Fig. 1).
The chamber consists of the following main units: com-
bustor 1, nozzle (tail pipe) 2, arrangements for feed of air
(valves) and fuel (shown by arrows), and spark plug 3. Its
operational principle is as follows. When the valves are
opened, air enters into the combustor. A combustible gas
under excess pressure is fed via the burner to the cham-
ber. The mixture formed is ignited by the spark plug. At
the moment of mixture ignition, the valves are shut. After
ignition, the pressure in the combustor increases, fuel feed
is ceased and combustion products are rejected through the
nozzle. At this moment rarefaction develops in the combus-
tion chamber which proceeds in step with opening of the
valves. At this time the next portion of air and fuel is fed to
the chamber where they are rapidly mixed. The valves are
shut, the mixture is ignited and the cycle is repeated.

For modelling of gas-dynamical processes in the PCC,
unsteady 1D equations of gas dynamics have the form of a
“channel” approximation. The x-axis is directed along the
PCC. The origin of the co-ordinates is made to agree with
the left-hand wall of the chamber. The gas flow moves along
the x-axis.
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The equations of one-dimensional, time dependent, com-
pressible gas flow in a variable-section channel, which
represent the conservation laws for mass, momentum and
energy, are written in the form

∂(Sρ)

∂t
+ ∂

∂x
(Sρv) = M (15)

∂(Sρv)

∂t
+ ∂

∂x

[
S(P + ρv2)

]
= P

∂S

∂x
+S

(
ξ+ η

3

) ∂

∂x

(
1√
Pρ

∂

∂x
(v
√
Pρ)

)
+F (16)

∂

∂t

[
Sρ

(
h − P

ρ
+ v2

2

)]
+ ∂

∂x

[
Sρv

(
h + v2

2

)]

= vS
(
ξ + η

3

) ∂

∂x

(
1√
Pρ

∂

∂x

(
v
√
Pρ
))

+ Q (17)

where S = S(x) is the cross-sectional area of the chamber
which is a function of the x-coordinate.

It is assumed that in the combustion zone each particle of
the gaseous mixture is at the state of chemical equilibrium.
For this, the characteristic time of the chemical reaction must
be considerably less than the time of turbulent mixing and
the residence time of a mixture particle in the reaction zone
[11,12].

The enthalpy is h = c1h1 + c2h2, here c1 and c2 are the
cross-section-averaged concentrations of fuel and combus-
tion products; h1 and h2 the enthalpy of fuel and combustion
products, respectively, h1,2 = h1,2(T ) = cp1,2T .

Assume that the combustion (heat release) zone lies within
0 ≤ x ≤ x∗ and a concentration of the components of
combustion products does not change behind it (in the nozzle
x∗ < x ≤ x(2). In this case, c2 = c3, c2 = 1 − c1 at 0 ≤
x ≤ x∗ and c1 = 0, c2 = 1 at x∗ < x ≤ x(2) ). To close the
system of equations (15)–(17), use is made of the equation
of state

P = ρ
R

µ
T (18)

The assumptions made slightly simplify a structure of the
flow in the PCC. However, they satisfy the integral conser-
vation laws, rather adequately fit large-scale motions of the
medium and can provide some information on variation of
gas-dynamical quantities.

The source terms are determined by the following
relations:

M = c(t)q0f δ(x − x∗) (19)

F = Mv0 (20)

Q = c∗(t)q0ρ0f

(
v2

0

2
+ qc

)
δ(x − x∗) (21)

where f = Sq/Vq = 1/x∗, Sq , Vq are the cross-sectional
area and the volume of the combustion chamber, respec-
tively; v0 the velocity of the supplied gaseous mixture (m/s);
δ(x − x∗) is the step function, δ = 1 at 0 ≤ x ≤ x∗ and
δ = 0 at x∗ < x ≤ x(2) and

c(t) =
{
βc′

1ρ1, nt∗ ≤ t < (n + 1)t∗, n = 0, 2, 4, . . .
(1 − c′

1)ρ3 + (1 − β)c′
1ρ1, n = 1, 3, 5, . . .

(22)

c′
1 = 1

αV0 + 1
(23)

c∗(t) =
{

1, nt∗ ≤ t < (n + 1)t∗, n = 0, 2, 4, . . .
0, n = 1, 3, 5, . . .

(24)

where t∗ = tz/2, tz the cycle time (s). A value of the pa-
rameter β lies within 0 < β < 1.

As the boundary condition at the left-hand boundary, the
conditions for a fixed wall impenetrable for the gas are
adopted. Consequently, v = 0 at x = 0.

The pressure P at x = 0 is determined according to [13].
At the right-hand boundary, the conditions for free gas efflux
at a subsonic speed are adopted. The initial conditions are
as follows:

t = 0, v = 0, P = P0, T = T0, ρ = ρ0.

3.1. Numerical methodology

For numerically solving the system of gas-dynamical
equations (15)–(18) with an account for the “acoustic”
viscosity, we have employed the Lax–Wendroff finite dif-
ference scheme and the correction method for flows.

An analysis of the results obtained has revealed that in-
troduction of the correction term (11), related to dissipation
of the acoustic energy, has a beneficial effect on the compu-
tational process. Introduction of the dissipative term with an
account for the second viscosity has markedly stabilized the
computational process, considerably decreased the ampli-
tude of quasi-steady solutions. In some cases, the velocity
amplitude decreased by ∼30%. Moreover, an amount of
the high- frequency harmonics decreased, i.e. the term (11)
is a peculiar filter of high frequencies. We succeeded in,
approximately, a 1.5–2 fold increase of the time step which
ensured the stability of calculations. However, the correction
term exerts an influence not only on PCC design but also on
solutions of the peculiar classical problem on gas pipeline
rupture or damage. Numerical simulation of the gas pipeline
damage has showed that introduction of (11) also exerts a
favorable influence on the computational process. Already
37 s later after the damage of a 10 km long gas pipeline at a
pressure of 52 atm, the gas outflow velocity shows a marked
(up to 10–20%) wavy swinging and a solution becomes un-
stable. An account of (11) stabilizes the computational pro-
cess and velocity variation becomes a monotonic process.
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Fig. 2. Time dependence of the pressure (1 − P/P0) and the gas velocity (2) in the section x(1): d(1) = 0.07 m, d(2) = 0.08 m, x(2) = 0.7 m, tz = 0.01 s.

4. Results and discussion

Calculations have been made for different operation
regimes of the PCC and ratios of its design components.
The calculations are carried out at the following values
of the main parameters: fuel is the propane–butane gas:
R = 8314 J/(kmol K); q0 = 0.0219 m3/s; ρ0 = 1.23 kg/m3;
α = 1.05; qc = 2.9 × 106 J/kg; cp = 1060 J/(kg K); cv =
776 J/(kg K); µ = 29.58 kg/kmol; µ2 = 28.36 kg/kmol;
cp2 = 1200 J/(kg K); P0 = 105 Pa; T0 = 293 K; d =
0.12 m; x∗ = 0.2 m; x(1) = 0.3 m.

As is seen in Fig. 2, during fuel combustion nt∗ < t <

(n+1)t∗, n = 0, 2, 4, . . . , of the “positive” part of the cycle,
in the region 0 ≤ x ≤ x∗ of the chamber heat is released
and the gas pressure increases.

This causes outflow of combustion products through the
nozzle. The gas velocity increases in the nozzle up to some

Fig. 3. Profiles of the gas-dynamical parameters at t = 0.025 s: (1) gas pressure (P/P0); (2) density (ρ/ρ0); (3) temperature (T/T0); (4) velocity.

maximum value. Then rarefaction develops in the combus-
tion chamber which makes the gas to flow back from the
tail pipe to the combustion chamber, which leads to negative
gas velocity. At the moment of rarefaction, a new portion of
fresh air and some amount of fuel are fed to the chamber.
Thus, the cycle is repeated. Data in Fig. 2 show a time de-
pendence of the pressure and velocity of the gas flow in the
critical cross-section x = x(1). As is seen, the pressure and
the gas velocity are sinusoidal and phase-shifted by π /2. This
is attributable to the standing waves which are formed in the
pulse combustion chamber. The existence of this effect in
the PCC is confirmed by Keller et al. [2] and Popov et al. [3].

The amplitude of pressure fluctuations in the combustion
chamber is larger than in the nozzle. Note that at t = 0, the
parameter values are determined by the initial conditions.

Fig. 3 illustrates profiles of the pressure, density, tempera-
ture, and gas velocity over the PCC chamber at t = 0.025 s,
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Fig. 4. Time dependence of the gas velocity at the nozzle outlet x(2) = 1.3 m.

Fig. 5. Time dependence of the gas temperature (T/T0) at the nozzle outlet (T0 = 293 K).

corresponding to the moment of completion of the “positive”
part of the cycle. It is seen that the pressure and the temper-
ature are higher in the combustion chamber than in the PCC
nozzle. The gas velocity increases in the chamber from 0 to
some value and then changes insignificantly in the nozzle.

Figs. 4 and 5 represent calculation results for the velocity
and the gas temperature at the nozzle outlet x = x(2) for a
chamber with the length x(2) = 1.3 m at tz = 0.013 s (see
the remaining parameters above). The data are given without
account for the term with the second viscosity coefficient.
As is seen in Fig. 4, at the instant the chamber is energized,
the velocity amplitude increases considerably, and then de-
creases and reaches the steady oscillating regime at a small
mean gas velocity. After some delay from the moment of

energizing the chamber, the gas temperature at the PCC
outlet increases in the course of time, in accordance with
the present model, up to the calorimetric temperature. Here,
temperature fluctuations occur.

5. Conclusions

Thus, the gas flow field in the chamber and in the outlet
section of the nozzle can be characterized as a high-
temperature flow with sufficiently strong velocity oscilla-
tions imposed on the comparatively small mean gas velocity.
A change in the fuel rate in the PCC and the geometry will
result in changing the gas-dynamical parameters and flow
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conditions. Nevertheless, the reported data qualitatively fit
the operation conditions of the pulse combustion chamber
intended for drying of materials. In conclusion, a strongly
pulsating high-temperature gas flow generated by the pulse
combustion chamber can be efficiently used for drying of
solutions and dispersed materials.
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